Permeable Pavements 101 Porous Pavements for Cool Cities?

Bruce K. Ferguson EPA Cool Pavements June 27, 2005

The potentials

- Clean water
- Long-lived trees
- Cool cities
- Quiet streets, Safe driving
- Beauty
- Preservation of native ecosystems
- Cost reduction

Eight years of research

- 170 interviews
- 800 technical articles & reports
- 280 installations in the field

Questions are numerous & detailed

But how about...

- Slowly permeable soil?
- Compaction?
- Clogging?

Therefore:

- I cannot cover all the technical questions today
- The book has 577 pages

To make a successful pavement

- Select it right
- Design it right
- Build it right
- Maintain it right

Eight families of porous materials

Each material has its own:

- Maintenance requirements
- Cost
- Installation methods
- Performance levels
- Advantages & disadvantages for specific applications

Alternative porous materials

- Porous aggregate
- Porous turf
- Plastic geocells
- Open blocks & grids
- Porous concrete
- Porous asphalt
- "Soft" materials
- Decks

- Inexpensive & very permeable
- Living & dynamic
- Recycled
- Sturdy, attractive, & reliable
- Quality depends on installer
- Technology advancing
- Organic & recycled
- Adaptive to site

Generic pavement components

Aggregate is the most ubiquitous component

"Open-graded" (single-sized)

Narrow range of sizes with little or no fines

- Open voids between particles
- 30-40% porosity
- Permeability 1,000 in/hr+
- Well drained, nonplastic
- Stability from angular interlock
- No dust

Thermal Effect 1:

Evapotranspirative cooling

Grass "pavement" surface:

18°F cooler than dense asphalt (noon, clear day)

— *Asaeda & Ca, 2000*

— Orange Bowl Stadium, FL

Thermal Effect 2: Effective tree shading

Rooting space:

As large as mature canopy, or trees can die in 7 years

"Structural soil" base-course rooting zone

Porous surface admits air & water

Thermal effect 3:

Can porosity per se reduce heat island?

Observation in Japan:

Light-colored, highly porous concrete block surface:

- Same high temperature as dense asphalt, all day & night

— *Asaeda & Ca, 2000*

Observation in Ontario:

Light-colored open-jointed concrete blocks:

- Cooler than dense asphalt during day
- Warmer at night

— James & Thompson, 1996

These were surprising results:

- Could color be less important than we thought?
- Could worn asphalt be as reflective as concrete?
- Could air movement through pores counteract porous material's low conductivity & capacity?
- Could either study have been flawed?

Research is needed:

To contrast porous & nonporous materials' thermal behavior

